作者:Hcamael@知道创宇404实验室
最近在搞IoT的时候,因为没有设备,模拟跑固件经常会缺/dev/xxx
,所以我就开始想,我能不能自己写一个驱动,让固件能跑起来?因此,又给自己挖了一个很大坑,不管最后能不能达到我的初衷,能学到怎么开发Linux驱动,也算是有很大的收获了。
我写的这个系列以实践为主,不怎么谈理论,理论可以自己去看书,我是通过《Linux Device Drivers》这本书学的驱动开发,Github上有这本书中讲解的实例的代码[1]。
虽然我不想谈太多理论,但是关于驱动的基本概念还是要有的。Linux系统分为内核态和用户态,只有在内核态才能访问到硬件设备,而驱动可以算是内核态中提供出的API,供用户态的代码访问到硬件设备。
有了基本概念以后,我就产生了一系列的问题,而我就是通过我的这一系列的问题进行学习的驱动开发:
提供我的Hello World代码[2]:
#include <linux/init.h> #include <linux/module.h> MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Hcamal"); int hello_init(void) { printk(KERN_INFO "Hello World\n"); return 0; } void hello_exit(void) { printk(KERN_INFO "Goodbye World\n"); } module_init(hello_init); module_exit(hello_exit);
Linux下的驱动是使用C语言进行开发的,但是和我们平常写的C语言也有不同,因为我们平常写的C语言使用的是Libc库,但是驱动是跑在内核中的程序,内核中却不存在libc库,所以要使用内核中的库函数。
比如printk
可以类比为libc中的printf
,这是在内核中定义的一个输出函数,但是我觉得更像Python里面logger函数,因为printk
的输出结果是打印在内核的日志中,可以使用dmesg
命令进行查看
驱动代码只有一个入口点和一个出口点,把驱动加载到内核中,会执行module_init
函数定义的函数,在上面代码中就是hello_init
函数。当驱动从内核被卸载时,会调用module_exit
函数定义的函数,在上面代码中就是hello_exit
函数。
上面的代码就很清晰了,当加载驱动时,输出Hello World
,当卸载驱动时,输出Goodbye World
PS:MODULE_LICENSE
和MODULE_AUTHOR
这两个不是很重要,我又不是专业开发驱动的,所以不用关注这两个
PSS: printk
输出的结果要加一个换行,要不然不会刷新缓冲区
驱动需要通过make命令进行编译,Makefile
如下所示:
ifneq ($(KERNELRELEASE),) obj-m := hello.o else KERN_DIR ?= /usr/src/linux-headers-$(shell uname -r)/ PWD := $(shell pwd) default: $(MAKE) -C $(KERN_DIR) M=$(PWD) modules endif clean: rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions
一般情况下,内核的源码都存在与/usr/src/linux-headers-$(shell uname -r)/
目录下
比如:
$ uname -r
4.4.0-135-generic
/usr/src/linux-headers-4.4.0-135/ --> 该内核源码目录
/usr/src/linux-headers-4.4.0-135-generic/ --> 该内核编译好的源码目录
而我们需要的是编译好后的源码的目录,也就是/usr/src/linux-headers-4.4.0-135-generic/
驱动代码的头文件都需要从该目录下进行搜索
M=$(PWD)
该参数表示,驱动编译的结果输出在当前目录下
最后通过命令obj-m := hello.o
,表示把hello.o
编译出hello.ko
, 这个ko文件就是内核模块文件
需要使用到的一些系统命令:
lsmod
: 查看当前已经被加载的内核模块insmod
: 加载内核模块,需要root权限rmmod
: 移除模块比如:
# insmod hello.ko // 把hello.ko模块加载到内核中 # rmmod hello // 把hello模块从内核中移除
旧版的内核就是使用上面这样的方法进行内核的加载与移除,但是新版的Linux内核增加了对模块的验证,当前实际的情况如下:
# insmod hello.ko insmod: ERROR: could not insert module hello.ko: Required key not available
从安全的角度考虑,现在的内核都是假设模块为不可信的,需要使用可信的证书对模块进行签名,才能加载模块
解决方法用两种:
同样先提供一份代码,然后讲解这份实例代码[4]
#include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> /* printk() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/errno.h> /* error codes */ #include <linux/types.h> /* size_t */ #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/cdev.h> #include <asm/uaccess.h> /* copy_*_user */ MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Hcamael"); int scull_major = 0; int scull_minor = 0; int scull_nr_devs = 4; int scull_quantum = 4000; int scull_qset = 1000; struct scull_qset { void **data; struct scull_qset *next; }; struct scull_dev { struct scull_qset *data; /* Pointer to first quantum set. */ int quantum; /* The current quantum size. */ int qset; /* The current array size. */ unsigned long size; /* Amount of data stored here. */ unsigned int access_key; /* Used by sculluid and scullpriv. */ struct mutex mutex; /* Mutual exclusion semaphore. */ struct cdev cdev; /* Char device structure. */ }; struct scull_dev *scull_devices; /* allocated in scull_init_module */ /* * Follow the list. */ struct scull_qset *scull_follow(struct scull_dev *dev, int n) { struct scull_qset *qs = dev->data; /* Allocate the first qset explicitly if need be. */ if (! qs) { qs = dev->data = kmalloc(sizeof(struct scull_qset), GFP_KERNEL); if (qs == NULL) return NULL; memset(qs, 0, sizeof(struct scull_qset)); } /* Then follow the list. */ while (n--) { if (!qs->next) { qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL); if (qs->next == NULL) return NULL; memset(qs->next, 0, sizeof(struct scull_qset)); } qs = qs->next; continue; } return qs; } /* * Data management: read and write. */ ssize_t scull_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct scull_dev *dev = filp->private_data; struct scull_qset *dptr; /* the first listitem */ int quantum = dev->quantum, qset = dev->qset; int itemsize = quantum * qset; /* how many bytes in the listitem */ int item, s_pos, q_pos, rest; ssize_t retval = 0; if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; if (*f_pos >= dev->size) goto out; if (*f_pos + count > dev->size) count = dev->size - *f_pos; /* Find listitem, qset index, and offset in the quantum */ item = (long)*f_pos / itemsize; rest = (long)*f_pos % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* follow the list up to the right position (defined elsewhere) */ dptr = scull_follow(dev, item); if (dptr == NULL || !dptr->data || ! dptr->data[s_pos]) goto out; /* don't fill holes */ /* read only up to the end of this quantum */ if (count > quantum - q_pos) count = quantum - q_pos; if (raw_copy_to_user(buf, dptr->data[s_pos] + q_pos, count)) { retval = -EFAULT; goto out; } *f_pos += count; retval = count; out: mutex_unlock(&dev->mutex); return retval; } ssize_t scull_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct scull_dev *dev = filp->private_data; struct scull_qset *dptr; int quantum = dev->quantum, qset = dev->qset; int itemsize = quantum * qset; int item, s_pos, q_pos, rest; ssize_t retval = -ENOMEM; /* Value used in "goto out" statements. */ if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; /* Find the list item, qset index, and offset in the quantum. */ item = (long)*f_pos / itemsize; rest = (long)*f_pos % itemsize; s_pos = rest / quantum; q_pos = rest % quantum; /* Follow the list up to the right position. */ dptr = scull_follow(dev, item); if (dptr == NULL) goto out; if (!dptr->data) { dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL); if (!dptr->data) goto out; memset(dptr->data, 0, qset * sizeof(char *)); } if (!dptr->data[s_pos]) { dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL); if (!dptr->data[s_pos]) goto out; } /* Write only up to the end of this quantum. */ if (count > quantum - q_pos) count = quantum - q_pos; if (raw_copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) { retval = -EFAULT; goto out; } *f_pos += count; retval = count; /* Update the size. */ if (dev->size < *f_pos) dev->size = *f_pos; out: mutex_unlock(&dev->mutex); return retval; } /* Beginning of the scull device implementation. */ /* * Empty out the scull device; must be called with the device * mutex held. */ int scull_trim(struct scull_dev *dev) { struct scull_qset *next, *dptr; int qset = dev->qset; /* "dev" is not-null */ int i; for (dptr = dev->data; dptr; dptr = next) { /* all the list items */ if (dptr->data) { for (i = 0; i < qset; i++) kfree(dptr->data[i]); kfree(dptr->data); dptr->data = NULL; } next = dptr->next; kfree(dptr); } dev->size = 0; dev->quantum = scull_quantum; dev->qset = scull_qset; dev->data = NULL; return 0; } int scull_release(struct inode *inode, struct file *filp) { printk(KERN_DEBUG "process %i (%s) success release minor(%u) file\n", current->pid, current->comm, iminor(inode)); return 0; } /* * Open and close */ int scull_open(struct inode *inode, struct file *filp) { struct scull_dev *dev; /* device information */ dev = container_of(inode->i_cdev, struct scull_dev, cdev); filp->private_data = dev; /* for other methods */ /* If the device was opened write-only, trim it to a length of 0. */ if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) { if (mutex_lock_interruptible(&dev->mutex)) return -ERESTARTSYS; scull_trim(dev); /* Ignore errors. */ mutex_unlock(&dev->mutex); } printk(KERN_DEBUG "process %i (%s) success open minor(%u) file\n", current->pid, current->comm, iminor(inode)); return 0; } /* * The "extended" operations -- only seek. */ loff_t scull_llseek(struct file *filp, loff_t off, int whence) { struct scull_dev *dev = filp->private_data; loff_t newpos; switch(whence) { case 0: /* SEEK_SET */ newpos = off; break; case 1: /* SEEK_CUR */ newpos = filp->f_pos + off; break; case 2: /* SEEK_END */ newpos = dev->size + off; break; default: /* can't happen */ return -EINVAL; } if (newpos < 0) return -EINVAL; filp->f_pos = newpos; return newpos; } struct file_operations scull_fops = { .owner = THIS_MODULE, .llseek = scull_llseek, .read = scull_read, .write = scull_write, // .unlocked_ioctl = scull_ioctl, .open = scull_open, .release = scull_release, }; /* * Set up the char_dev structure for this device. */ static void scull_setup_cdev(struct scull_dev *dev, int index) { int err, devno = MKDEV(scull_major, scull_minor + index); cdev_init(&dev->cdev, &scull_fops); dev->cdev.owner = THIS_MODULE; dev->cdev.ops = &scull_fops; err = cdev_add (&dev->cdev, devno, 1); /* Fail gracefully if need be. */ if (err) printk(KERN_NOTICE "Error %d adding scull%d", err, index); else printk(KERN_INFO "scull: %d add success\n", index); } void scull_cleanup_module(void) { int i; dev_t devno = MKDEV(scull_major, scull_minor); /* Get rid of our char dev entries. */ if (scull_devices) { for (i = 0; i < scull_nr_devs; i++) { scull_trim(scull_devices + i); cdev_del(&scull_devices[i].cdev); } kfree(scull_devices); } /* cleanup_module is never called if registering failed. */ unregister_chrdev_region(devno, scull_nr_devs); printk(KERN_INFO "scull: cleanup success\n"); } int scull_init_module(void) { int result, i; dev_t dev = 0; /* * Get a range of minor numbers to work with, asking for a dynamic major * unless directed otherwise at load time. */ if (scull_major) { dev = MKDEV(scull_major, scull_minor); result = register_chrdev_region(dev, scull_nr_devs, "scull"); } else { result = alloc_chrdev_region(&dev, scull_minor, scull_nr_devs, "scull"); scull_major = MAJOR(dev); } if (result < 0) { printk(KERN_WARNING "scull: can't get major %d\n", scull_major); return result; } else { printk(KERN_INFO "scull: get major %d success\n", scull_major); } /* * Allocate the devices. This must be dynamic as the device number can * be specified at load time. */ scull_devices = kmalloc(scull_nr_devs * sizeof(struct scull_dev), GFP_KERNEL); if (!scull_devices) { result = -ENOMEM; goto fail; } memset(scull_devices, 0, scull_nr_devs * sizeof(struct scull_dev)); /* Initialize each device. */ for (i = 0; i < scull_nr_devs; i++) { scull_devices[i].quantum = scull_quantum; scull_devices[i].qset = scull_qset; mutex_init(&scull_devices[i].mutex); scull_setup_cdev(&scull_devices[i], i); } return 0; /* succeed */ fail: scull_cleanup_module(); return result; } module_init(scull_init_module); module_exit(scull_cleanup_module);
驱动分为3类,字符设备、块设备和网口接口,上面代码举例的是字符设备,其他两种,之后再说。
如上图所示,brw-rw----
权限栏,b开头的表示块设备(block),c开头的表示字符设备(char)
主编号用来区分驱动,一般主编号相同的表示由同一个驱动程序控制。
一个驱动中能创建多个设备,用次编号来区分。
主编号和次编号一起,决定了一个驱动设备。
如上图所示,
brw-rw---- 1 root disk 8, 0 Dec 17 13:02 sda brw-rw---- 1 root disk 8, 1 Dec 17 13:02 sda1
设备sda
和sda1
的主编号为8,一个此编号为0一个此编号为1
在我的概念中,驱动提供的接口是/dev/xxx
,在Linux下Everything is File
,所以对驱动设备的操作其实就是对文件的操作,所以一个驱动就是用来定义,打开/读/写/......一个/dev/xxx
将会发生啥,驱动提供的API也就是一系列的文件操作。
有哪些文件操作?都被定义在内核<linux/fs.h>
[5]头文件中,file_operations
结构体
上面我举例的代码中:
struct file_operations scull_fops = { .owner = THIS_MODULE, .llseek = scull_llseek, .read = scull_read, .write = scull_write, .open = scull_open, .release = scull_release, };
我声明了一个该结构体,并赋值,除了owner
,其他成员的值都为函数指针
之后我在scull_setup_cdev
函数中,使用cdev_add
向每个驱动设备,注册该文件操作结构体
比如我对该驱动设备执行open操作,则会去执行scull_open
函数,相当于hook了系统调用中的open
函数
对上面的代码进行编译,得到scull.ko,然后对其进行签名,最后使用insmod
加载进内核中
查看是否成功加载:
虽然驱动已经加载成功了,但是并不会在/dev目录下创建设备文件,需要我们手动使用mknod
进行设备链接:
在该实例中,并没有涉及到对实际物理设备的操作,只是简单的使用kmalloc
在内核空间申请一块内存。代码细节上的就不做具体讲解了,都可以通过查头文件或者用Google搜出来。
再这里分享一个我学习驱动开发的方法,首先看书把基础概念给弄懂,细节到需要用到的时候再去查。
比如,我不需要知道驱动一共能提供有哪些API(也就是file_operations结构都有啥),我只要知道一个概念,驱动提供的API都是一些文件操作,而文件操作,目前我只需要open, close, read, write
,其他的等有需求,要用到的时候再去查。